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Ⅰ. Introduction

Nowadays, machine learning (ML) is primarily

involved in big data and cloud-based applications.

With such an increase in the ML demand, concerns

about data privacy being used to derive valuable

insights and train ML models are also increasing. Both

ML models and cloud-based systems are vulnerable

to various privacy attacks that can exploit sensitive

information from the data itself. This is particularly

true for applications that involve sensitive or personal

information, such as healthcare, finance, or

government.

For instance, privacy attacks that target ML models

include membership inference attacks (MIA)[1], model

inversion[2,3], and attribute inference attacks (AIA)[4,5],

where the adversary tries to infer sensitive information

about the training data by exploiting the model itself.

In the case of privacy attacks for cloud-based systems,

it includes side-channel attacks[6], and

man-in-the-middle (MITM) attacks[7], where the

adversary can obtain or eavesdrop on training data in

the cloud-based system.

The threat model in Fig. 1 shows the practical

scenario for privacy attacks in cloud-based systems.

Assume the client sends structured data in table format

to the cloud server to train the ML model in a cloud

computing environment. Data privacy could be

exploited by an MITM attack during data transmission

or by MIA and AIA attacks that target the fitted ML

model on the cloud server side.

To address such concerns, we consider differential

privacy (DP)[8], which is currently recognized as a

golden standard for privacy preservation. DP is a

mathematical concept of privacy that guarantees

single-user or record indistinguishability by the

addition of randomly generated noise to the data. To

the best of our knowledge, differentially private data

generation methods[9-11] face large privacy and utility

trade-off problem, due to the large performance

degradation of such noisy data. To preserve the high

usefulness of the data, most methods sacrifice privacy
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guarantees or vice versa.

In this paper, we propose a novel two-fold DP

method of random noise addition inspired by the

concept of no operation to guarantee high privacy and

high data utility simultaneously. Here, the term no

operation refers to the no-op machine language

instruction that does nothing. In other words, the

random noise added to the data is not supposed to

change the utility of the data. The proposed method

combines the regular concept of DP i.e., additive with

the novel concept of reductive DP, where the former

adds random noise, and the latter subtracts random

noise. However, it is worth noting that reductive DP

is not capable of removing the noise completely due

to the random nature of the noise. Thus, it does not

result in the cancellation of differentially private

noise. The key concept of the proposed method is to

decrease the degradation of the data utility while

preserving privacy, specifically mitigating the MITM

and attribute inference attack in the ML models for

cloud-based systems.

The rest of the paper is organized as follows. First,

we briefly introduce details of DP and mechanisms

in section II. Next, we introduce the proposed method

and provide a mathematical evaluation in section III.

In section IV, we experimentally evaluate the

proposed method. Finally, we conclude this paper in

section V.

Ⅱ. Preliminaries

2.1 Differential Privacy
DP is the mathematical framework for preserving

the privacy of individuals in a dataset while enabling

useful analysis. The basic idea behind DP is to add

various types of random noise calibrated to hide a

single record, such that its presence or absence can

cause at most exp() + d change, where  is the
privacy parameter and d is a relaxation parameter.

1) Laplace Mechanism[8]: Since DP is not an

algorithm but a notion of privacy, there are various

techniques to ensure DP is called differentially private

mechanisms. The Laplace mechanism is a

representative output perturbation mechanism. It adds

random noise drawn from the Laplace distribution.

(1)

where f(D) is the original numerical value, Lap is the

probability density function of Laplace random

distribution, e is the privacy parameter, and Df is the

sensitivity, that quantifies the maximum change that

can occur in the absence of a single user in the dataset.

2) Composition Property[8]: DP has several

properties that enable the building of complex

mechanisms and applications. Sequential composition

implies that if F1(x) satisfies e1-DP and F2(x) satisfies

e2-DP, then the combined mechanism G(F1(x),
F2(x)), which sequentially releases results, satisfies

(e1 + e2)-DP.

2.2 Denoising Autoencoders 
Denoising autoencoders (DAE) are a type of neural

network that is trained to remove the noise from the

input data. Similar to traditional autoencoders, DAE

consists of encoder and decoder networks, that

produce compressed representation and reconstruct it

back. However, to denoise the input DAE encourages

the network to capture the most salient features while

ignoring the noise and tries to minimize the difference

between the reconstructed output (denoised) and the

clean input. DAEs are commonly used in denoising

unstructured data such as images[12,13] and signals [14]

but can also be adapted to denoise structured data[15].

Ⅲ. Proposed Method

In this section, we introduce the concept of the

proposed method. As shown in Figure 2, the proposed

Fig. 1. Threat model
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method is twofold. Thus, it consists of (1) Additive

DP and (2) Reductive DP steps.

3.1 Additive DP 
The first step of the proposed method is the

well-known additive application of random noise

drawn from the Laplace Mechanism given the privacy

budget e1 and sensitivity Df. As a result, we obtain

an e1-differentially private version of the data.

However, at this stage, such a straightforward addition

of noise provides high privacy guarantees while

reducing the usefulness and utility of that data. Thus,

it corrupts the distribution of data and negatively

impacts the performance of the ML model, which will

be trained on e1-differentially private data.

3.2 Reductive DP  
The second step of the proposed method is a novel

reductive DP concept implemented using a DAE that

tries to remove the e2-differentially private noise

distribution from the e1-differentially private

generated in the previous step. Here, we assume that

e1 = e2 to efficiently estimate the amount of random

noise, while the sensitivity Df remains the same.

The key concept behind Reductive DP is an attempt

to preserve the distribution of differentially private

data to be as close as possible to the distribution of

original data while offering strong privacy guarantees.

It is important to note, that the nature of the noise

is random, and DAE cannot completely remove the

random noise that is added in the additive DP step.

Instead, DAE tries to learn the noise distribution

(e2-DP) and generates denoised version of the

e1-differentially private data. As a result, the

generated data can be referred as (e1 +

e2)-differentially private data according to the

sequential composition property.

Figure 3 illustrates the high-level architecture of the

proposed Reductive DP step implemented with the

DAE.

During the training phase, as shown in Figure 3

(a) the network receives two inputs: the differentially

private (noisy) dataset and the original dataset defined

as Y. In the forward pass, the noisy dataset is inputted

into the encoder, which compresses it into a

lower-dimensional representation (latent space).

Subsequently, the decoder attempts to reconstruct the

original data from this compressed representation.

The process is optimized using a loss function

defined as the mean squared error (MSE) between the

reconstructed Ŷ and original data representations Y,

aiming to minimize this loss. The MSE is defined as

follows:

(2)

Fig. 2. Operational overview of the proposed method
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where the n is the number of samples, Yi is the original

value of the ith sample, and Ŷi is the reconstructed

value of the ith sample.

By consistently training on such pairs of noisy and

original data, the DAE is also able to learn the

characteristics of the noise distribution. Since the

training dataset includes noise derived from the

Laplace distribution, the model learns to identify and

mitigate this specific type of noise without explicitly

modeling it using parameter values.

Figure 3 (b) illustrates the test phase when the

differentially private test data is denoised using the

trained DAE model by removing the previously

learned noise distribution. However, it is impossible

to learn and predict the exact values of the noise

distribution, as it is randomly generated. Therefore,

we assume that the reconstructed dataset will have an

approximately similar distribution to the original data,

with the Laplace noise substantially reduced denoted

as (e1 + e2)-differentially private data.

3.3 Analysis  
To prove that the proposed method satisfies DP,

we show that both components satisfy e1 and e2-DP

separately. Specifically, equation 3 is the

mathematical proof of the regular additive DP

concept[8], where the random noise drawn from the

Laplace distribution is added to the original values,

and equation 4 is our proof of the novel reductive

DP concept, where the noise, similarly drawn from

the Laplace distribution, is subtracted. Furthermore,

we proceed to show that, in its entirety, the proposed

method conforms to the principles of DP.

(3)

In the equation 4, we argue that the subtraction of

random noise drawn from the Laplace distribution

also satisfies DP, since − |− (z− f(x))| and− |−

(z− f(y))| equal to the − |z− f(x)| and − |z− f(y)|

respectively due to the absolute value principle.

(4)

Fig. 3. Overview of the DAE model as Reductive DP step
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Additionally, in accordance with the composition

property introduced in Section II, the sequential

application of DP to the data satisfies (e1 + e2)-DP.

The additive DP phase complies with e1-DP. The

subsequent reductive DP phase aims to remove the

learned noise distribution, which is close to e1, but

denoted as e2. Since both phases are applied

consecutively, they satisfy the sequential composition

property of DP.

Ⅳ. Experiments 

To evaluate the proposed method, we compared the

performance of the ML model in a cloud server

trained with data generated by the two-fold DP

method with the performance of the ML model trained

with original data.

4.1 Experimental Environment 
We evaluate the proposed method by running

several experiments on the environment with the

following features: - Windows 10, AMD Ryzen 5

3600 6-Core Processor,16 Gb RAM, Python-3.8, and

Jupyter Notebook. As an input dataset, we used the

Bank Loan Prediction dataset [16] which is a real-life

tabular dataset mainly with numeric features. Since

the dataset is quite imbalanced, we apply the synthetic

oversampling method SMOTE[17] to balance out the

classes.

4.2 Implementation 
As an Additive DP mechanism, we implemented

the function that injects noise element-wisely to the

original data, leveraging the numpy() library to

generate Laplace-distributed random noise,

parametrized by the e and sensitivity Df. Here, the

Df is set to 1 in all cases for evaluation convenience.

As a Reductive DP mechanism, we implemented

the DAE, whose architecture consists of an encoder

and a decoder, each with multiple hidden layers of

16 nodes activated by the ReLU function. Also, batch

normalization layers are incorporated to enhance

model stability and training speed into both encoder

and decoder modules. The encoder compresses the

multi-dimensional input data into a one-dimensional

latent space, and the decoder subsequently

reconstructs it, trying to minimize the loss. The loss

function is configured as the mean squared error

between the original data and the reconstructed data,

and the objective function is to minimize the loss.

During the training phase, the model processes both

noisy (differentially private) and original clean data.

In an ideal scenario, the loss would reach zero,

indicating that the reconstructed data is perfectly

identical to the original. However, given the

randomness of the added noise, a perfect

reconstruction is unattainable. Despite this, the

network is capable of approximating and mitigating

the noise distribution. This is evidenced by the

achieved training mean squared error of 15.209 and

the validation mean squared error of 11.222 between

the reconstructed and original data.

Figure 4 represents the change of the mean squared

error during the training process for different epochs.

From this figure, it is evident that the mean squared

error decreases significantly around the 1000th epoch.

Fig. 4. MSE of the DAE

4.3 Performance Evaluation 
To evaluate the effectiveness of the proposed

two-fold method, we compare the performance of

multiple ML models trained on original data,

differentially private data generated by the addition

of straightforward Laplace noise, and data generated

by the proposed method.

We trained and evaluated 3 different ML models

with original data. Namely, the random forest (RF)
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model with 50 estimators and maximum depth of 5

with the baseline accuracy of 98.4%, the artificial

neural network (ANN) with the baseline accuracy of

94.9%, and the support vector machine (SVM) with

the baseline accuracy of 95.3%.

We also compare the performance of the ML

models trained on differentially private data generated

by the straightforward Laplace mechanism(standalone

additive noise) and by the proposed two-fold method

for privacy budgets e equal to 1, and 0.1. The

definition of DP implies that the smaller the privacy

budget, the less information leakage is allowed, and

the larger the noise perturbs the data. Consequently,

a decrease in e value inevitably leads to accuracy

degradation.

The accuracy of the standalone Laplace mechanism

under e = 1 was 88.1% for the random forest model,

82.5% for the artificial neural network, and 83.8% for

the support vector machine. The accuracy of the

proposed two-fold method under e = 1 was 92.8%

for the random forest model, 89.4% for the artificial

neural network, and 89.7% for the support vector

machine.

Similarly, the performance of the Laplace

mechanism under e = 0.1 was 79.0%, 75.1%, and

78.9% for the random forest model, artificial neural

network, and support vector machine, respectively.

The accuracy of the proposed methods was 84.5%,

87.2%, and 90.1% for the random forest model,

artificial neural network, and support vector machine,

respectively.

For the smallest privacy parameter e = 0.01, the

accuracy of models on differentially private data

generated by the standalone Laplace mechanism was

64.1% for the random forest model, 59.2% for the

artificial neural network, and 62.7% for the support

vector machine. The performance of the data

generated by the proposed method was 72.5% for the

random forest model, 74.2% for the artificial neural

network, and 70% for the support vector machine.

Table 1 summarizes the accuracy of the three

distinct ML models under the straightforward Laplace

mechanism and proposed two-fold DP mechanisms.

As we can observe from the table, overall, the

proposed method's performance outperforms the

Laplace mechanism's performance across all ML

models and e values, highlighting its efficiency in

comparison. The proposed method demonstrates the

average performance improvement of approximately

10.23%, 9.6%, and 5.83% for the e values 0.01, 0.1

and 1. This method effectively mitigates privacy and

utility trade-offs, delivering superior performance

even with smaller e values.

Ⅴ. Conclusion 

In this paper, we introduce a novel approach for

generating differentially private tabular data, with the

aim of preserving both accuracy and utility. Our

method uniquely combines traditional additive

differential privacy mechanisms with a new reductive

differential privacy strategy. This latter approach

employs a denoising autoencoder to approximate the

original data distribution. Experimental results

demonstrate that the data generated through our

method achieves high levels of accuracy. The

proposed method demonstrates the average

performance improvement of approximately 10.23%,

9.6%, and 5.83% for the e values 0.01, 0.1, and 1.

Overall, our proposed methodology represents a

promising avenue for future research and development

in the realm of privacy-preserving data analytics.

Despite these advances, much work remains to be

done to enhance the quality and efficiency of

differentially private data generation techniques.
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